If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2-1=0
a = 20; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·20·(-1)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*20}=\frac{0-4\sqrt{5}}{40} =-\frac{4\sqrt{5}}{40} =-\frac{\sqrt{5}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*20}=\frac{0+4\sqrt{5}}{40} =\frac{4\sqrt{5}}{40} =\frac{\sqrt{5}}{10} $
| 4x+6=3x+x+6 | | x=3+4/5 | | 2^x-1=12 | | -1+4x=4(15x+40)-x | | 7=-2w+25 | | 5(-x-2)=-20 | | x/5+62=180 | | 4=1/2p-7 | | 6(1/2x+3)=36 | | x+2/3=17/3 | | 4(x-3)=-2+4x | | 15x-10x=535000 | | -2v+(-4)+8+(-3v)=-5v-4+9 | | 3(x+5)=x+103(x+5)=x+10 | | x+60/2=39 | | -3(-2x+9)=-27 | | x+2=5(2x+3)-4 | | -3(2y-2)+2y=4+2(7y-6) | | -a^2+5a=0 | | S(f+2)=2(3-f) | | 2x-12+4x+43+9x-26=180 | | x2+3x-378=0 | | 6{x-1}=6x-1 | | 2(x+6)-5=13 | | Z^3=1-5i | | 2(x+8)=-2(4x-4)+4x | | 5m=m+16 | | -3(y-7)=6y+39 | | -20+n=3.50n | | 7x-15=3x+31 | | 9n=20 | | -z/2+4=-1 |